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TWODIMENSIONAL VISCOUS FLOW OF A COMPRESSIBLE FLUID

I. PRELIMINARIES

The equations of motion for a twodimensional flow of a compressible

viscous fluid are

= 1 (2u . 2v a2 u a2uPCUUx+vuy)+p x  - _ _) + E)i,--y + -= ,
" x i'Jx ax ay x -- +--

(Navier-Stokes)

(1.1)
a (-u av) ,2v + 2v.

p(uv +vv )+p + T) + v w)

(pu)x +(pv) = 0 , (continuity)x y

Where u and v are the velocity componants, p is the pressure, p is the

density and W is the constant coefficient of viscosity. In order to

make the system determinate, one assumes that either the density function

p(x,y) is known, or that the equation of state in the form of a pressure-

density relation is known.

We shall develop equivalent systems of equations which replace

(1.1) similar to those developed by Martin {i} for viscous incompressible

fluids, by Chanda {2) for Cosserat fluids and Nath {3} for magneto-

hydrodynamic flows. The new systems of equations will have the vorticity W,

speed q, velocity gradient c, defined as,

(1.2)

W =v uu 2 ,  E = u +V

the pressure p and density p as dependent variables. A system of curvi-

linear coordinates defined by the streamfunction p and an arbitrary function

fora the independent variables of the system. Once solutions are obtained

for these equations, the flow may be mapped onto the physical plane.

L . .... .T 
'
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After establishing the new systems of equations, we shall consider

two special cases of flows, one with streamlines enveloping an arbitrary

curve and the second case with streamlines as involutes of an arbitrary

curve. In both cases we shall show that the curve must reduce to a

single point.

In order to arrive at the systems of equations mentioned above, we

need the following preliminary results:

We first re-write the system (1.1) as

pqqx+p-pvw = -Vw +4IjE

3 (Navier-Stokes)

pqq y+py+pu = u +4pe
y

(1.3)

pE+P xU+ v = 0 (continuity)y

S= V y =u+vity, Gradient)

The stream function f(x,y) is defined by the continuity equation of (1.1),

x = -(pV, 4y = pu (1.4)

Let *(x,y) be an arbitrary function so that the two systems of curves

= const., 4 = const. determine a curvilinear coordinate system. We may

now treat the variables x, y, u, v, w, q and c as functions depending on , 4.

Once these functions are known in the ( ,*) - plane, we may transform them to

the physical plane provided the Jacobian

J = x~ y43-x y4 (1)

in non-zero and finite. Then

x Jy y 0 = J ~x j, Y = J (1.6)
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Tht. first fundamental form for the (x,y)-plane is given by

ds 2 = Ed0 2 + 2Fd~d, + Gdb 2 , (1.7)

where

V = 
2+, F = X2 +, 2  and W + -F(1.8)

The Gaussian curvature given by

K = 1
2  2 W 2 W (18

where

r 2
ir -FE, +2EF -EE,

2W?

r2
12 EG -FE (1.9)

0 20

r2 EG -2FF +FG
22 $. p

2W2

are the christaffel symbols {41, should vanish.

If 6 is the angle of inclination of the tangent to the streamline

const. in the sense of increasing 0, then

S- fJ (rId, + 2d(1,

ahd

Z x+iy = fe" {Ed + (F+iJ)d} (1 ii)

with J = +W.

The identities

2) F 2 E 2

-- ;2 r I l j2 12 (1.12)



and

W- -- ) -11- 2E r12+ -22

will be of use in later calculations.



2 . EK'A'i' tON~

With thQ introduction of vorticity ,, specd (I and qradient U as

given in (1.2), the Navier-Stokes eC:lationS; (i.I) may be written with

curvilinear coordinates ¢, 'p as

4 F E
pqq =-veC +i --vOw -- P

S3 YpJ~

(2.1)

or, equivalently,

4 4
G(pqq + P0 + Pc ) - F(pqq4 + PO + w + 4-1co) = PJW

4 (2.2)-F(pqq +p (2.2)C

F pq + E (pqq + P ) + W + -VC) =p J3.

We may use theorem 4.1 of {11 to write the equation of continuity as

q E (2.3)
PW

Further we may use (1.6) together with (1.4) to eliminate the

velocity componants in the equation of continuity of (1.3) to obtain

C = 1_(1) (2.4)P!
or, using (2.3)

E p q 2  (2.5)

Thus the equation of continuity and the equation for the velocity

gradient c may be replaced by any two of the three equations (2,3) - (2,5).

I
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From the pair of equations (1.12) together with (2.3), we have

Ff 2 -81 2  Fr 2 -E V (2.6)
(pq) , = 11-3.2 (Pq) 12 22

If, using (2.6) and (1.10), the derivatives of q and 6 are eliminated

from the relation ({i}, eg. 5.2),

= F q - + J

we get

rWW EG 2 2EF 2 + 2 (PP E, (2.7)=prE, 11 _ 2 + _r F 2 7P/EW P EWF 2 2 - /-z (Fp -Ep).(27

Using (1.13), this equation may be written as

W I{F E= { - (-w) }
(2.8)

This equation would then replace the vorticity equati-pn of (1.3). We

now have a system of equations which may be used to replace (1.3) and equiva-

lently, (1.1).

Theorem 2.1. If the streamlines f = const, of the flow of a viscous com-

pressible fluid are taken as one set of coordinates in a curvilinear coordi-

nate system 4, ' in the physical plane, the system (1.3) of five partial

differential equations for u, v, w, p and £ may be replaced by the system

4 4

(Navier-Stokes)
4 4

-F(pqq 4 p4 + VE4,  +E(pqq,+p +W.+ .i

pq = -1 =+W, (continuity, gradient)

SP4
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- ( -( F) 1} (vorticity)
P pW 4) V!

a n3

K 1(WI, 2 ( 2
K = (-11) - 19) =0, (Gauss)

of six equations for E, F, G, q, w, P, p and c as functions of 4 and 1.

Once a solution is found for this system, the flow in the physical plane

is obtained by the two relations (1.10) and (1.11).

The Gauss equation above insures that the first fundamental form

given in (1.7) with E, F and G as functions of 4 and 4 is for a plane.

We now proceed to a second formulation of the equations given in

Theorem 2.1.

If we differentiate the first equation of (2.1) with respect to 1P

and the second with respect to 4 and subtract, we arrive at the equation

±WA2W T W q 9(pq) = 0 (2.9)

where A2 is Beltrami's differential parameter of second order {4},

I (Gf -Ff + (-Ff +Ef (1
A2f = A1 +( ... ~} (2.10)

W 4 W i '

and D(p,q) is the Jacobian p q -p q
a( ,f)

Using the equation (2.3) for q, we may eliminate the derivatives

of q from (2.9) to obtain

ST W L (l/p,E/W2 ) - 0. (2.11)
2

tWe will now derive an equation for the pressure p. Using (2.3), we

obtain the derivatives of q and with the help of (1.12), (1.13) and (2.7)

write them in the form,

E I F 2 E 2
pqq + j-2 _ 2}

- P W2

. • , .. . ,(4,,,



pqq + 1 { it - (2 12)
y P V.1 I~ 1I t 12

Then equation (2.2) mty Le written as,

= ± -Fp +Ep ± 4 -E[. i i . 2

p -F 4 e -Fe I r i 2

W w1

We now apply the integrability condition W = and use the Gauss

equation to obtain

4 2 r 2 F 2  (r2)2 2 1 2
A2 (p + -i 11 12 12 + (-) 12 _ (i) I1

2 2  P --17 P -1- (2.13)

Using (2.8), the vorticity w may be eliminated from (2.11) and

using (2.4), E may be eliminated from (2.13). Then these two equations,

together with the Gauss equation form an underdetermined system of three

equations for E, F, G, p and p. Once a solution is obtained for this

system, the flow in the physical plane is obtained from equations (1.10) and

(1.11). We now state the following theorem:

Theorem 2.2. The twodimensional flow of a viscous compressible fluid may

be described by first solving the underdetermined system of three partial

differential equations given by (2.11) and (2.13) from which w and c are

eliminated and the Gauss equation K = 0 for E, F, G, p and p and then

obtaining the angle of inclination e( ,P) from (1.10) and x(4,f), y(,f,)

from (1.11) which will then implicitly define the streamfunction f(x,y).

We will now develop a third system of equations for q, w, p and p

as functions of and P. We set
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F = pw¢ (pqq+P- 34-v (q p,+- ,(.4

4 2

2 4 4J = q +  -  -,(pqq +P +E (pqq+- -s Tl) -
43 4,

The equations (2.2) may then be written as

E F G J W

(2.15)E F G J W

with W = +J according as W = J.

From (2.3) and (2.15) we have

E
W = 2- 2(2.16)

p2q2W

so that equations (2.15) yield

"J2 MUevE EF EG

E =p2q222 F = p2q22 G= p2q22 (2.17)

which shows that if w, q, c, p and p are known as functions of 4 and 4,

the quantities E, F and G may be calculated from (2.17) which would then

give the flow in the physical plane from equations (1.10) and (1.11).

The equation (2.5) together with (2.15) will yield us the first

equation of the new system.

Ii
A
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E : -2_ (2.18)
J F

The vorticity equation (2.8), which can now be written in the form

E to E (2.19)(pJ) - J (o) pq2

The Gauss equation may be obtained from the integrability condition

0 =(2.20)

where a and a are obtained from (1.10) as

(I p ! 2 ,JX 1 1
S a E 1  (2..21)

To obtain expressions for the Christoffell symbols r 2 and F 2 , we use

11 12

(2.4) to eliminate e from (2.12) and use these equations to eliminate the

derivatives of q from (2.2). We then have

I ( 4 F 4 E
PW W) 43)w * 3p W

(2,22)

+2  4 G 4 F 1 1
Pw 12 3 P4+(p+ W 'p 3'W +(P)W

The integrability condition (2.20) then yields the Gauss equation

in the form

1 4 F 1 4 E

p- + 3 pqd p 3+ P C,

- (2.23)

I IP + II IEI G 1 4 11 B



Theorem 2.3. When the streamliner , = const. of a steady viscous

compressible flow are taken as one set of coordinates in a curvilinear

coordinate system 4, P in the physical plane, the system (1.1) for the

velocity componants u, v, pressure p and density p as functions of x and

y may be replaced by a system of three equations (2.18), (2.19) and

(2.23) for the vorticity w, speed q, velocity gradient c, pressure p

and density p as functions of 0 and 4). Once the solutions for this

system are found, the flow in the physical plane may be obtained by

calculating the inclination a( ,M) from (1.10), x( ,') and y( ,P) from

(1.11) with the help of (2.17).

The systems of equations developed so far can be made determinate

if the equation of state is unknown and by a proper choice of the

coordinate curves = const. For example, if the curves J const.

are chosen as orthogonal to the streamlines, the system given in

Theorem 2.3 becomes
'n' 2E paF= O , -=

E JwE

E ) = WE
pq ,(2.24)

=(p++ 4 E )- + = } =)_-
pq 43pq * pq (i)

One may also choose = p to obtain another system of equations for

w, q, c and p as functions of p and i provided the isobars and

streamlines do not coincide.
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3. Special Cases.

Consider the orthogonal system of curves consisting of tangent

lines and the involuter of an arbitrary curve C. The system may be

represented by two parameters n = const., F = const. where n is the

angle of elevation of the tangent lines. If a = o(n) is the arc-

length of C from a fixed reference point, the radius of curvature is

given by

do = R (3.1)

and the first fundamental form is given by

ds2 = dC2 + (E-o)2dn2 .
(3.2)

We shall first study flows for which the streamlines are tangential

to the curve C. We then choose the second coordinate curves # const.

as the involutes of C so that

0( ), 4 = (TI) - (3.3)

Comparing (3.2) with (1.7) we get expressions for c, F, G and J as
( 2 ( ..)2

£ = . ) , F = 0, G= 2 = -o (3.4)

where d nd d
- and =d--

From (2.3), (2.4) and (2.8) we have expressions for q, wa and c as

q - p( -0- , - p ' - ----a p(-a) }). (3.5)

The Gauss equation of Theorem 2.2 is identically satisfied and the

equation (2.11) for w becomes

a1  (-a)5 + a 2 (-) 4  + a3 ( -a)
3  + 4(-a)2  + a5(-a) + a6  o, (3.6)

where

lf
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. : i = _l { ¢ (1 l)~ r + a,, ( ) +.}+ ,

a,,= 5P 'cy I ) - 4p (4) 3p, (-) - 3 ,J ( )nn V- Y1' nn

22

P P;~ P p

(3.7)= (9p ' a - 6p "a" '- -.. 3 , a,)- (3,7)

(12p .' + 4, '") (I 1a

a. =5~p' (-) - 4p~ (.) 6- 3j'o,- 3 i0- (-)

2nn
(3.7) as  -54 (9i'o -(1)40'o - viPc'- i'o 3

a52ipa + 15' + 1 'a ') ( 1 ),pn pm

3
a6 = -15 'o'

Equation (3.6) is an identity which must hold everywhere, and it

must also be valid on the curve C, given parametrically as E = o(n ) .

Thus a - 0 which could happen only if a' = 0. By (3.1) This means

that the radius of curvature vanishes and the curve C must reduce to a

point. We thus have the theorom,

Theorem 3.1. If the streamlines in the two dimensional flow of a

viscous compressible flow are straight lines, they must be either

parallel or concurrent.
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A ; a second exampvnjL wo choos- the, involutes; of the curve C as

streamlines and the tawiiQit lines as the orthogonal coordinate curves

const. so that

= ~() , ~ ~~F)(3.8)

We then have as before

EF=O G ,- (3.9)

and

Using (3.9) and (3.10), equation (2.11) may now be written as

a, 5 2 ~L a(~) + a( 0 2 + a.(-)+a (3.11)
+ a2 + 3 + 6 =0,

where

a, I' + 3 fp
2

Z 3I-) + 'iJ(
4

-)
P p + 'Pt; P

a 21_ 4 (1) 24' (1) 2'O ,2(1
2 2j-)p'-) +~

a3  P np- iP) + p(-1) - C -) (3.12)
P P PTIn 111 p r P n

a4 4 (i + p4 0 ) + +'OW)) (+ --

as = 1) C + a a6  31
P n p p

Again, (3,11) should hold on the curve C, leading to the

conclusion that a' =o and the curve must reduce t~o a point. Thus

we have
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Theorem 3.2. The streamlines in the two dimensional flow of a

compressible viscous fluid can be involutes of a curve C only if C

reduces to a point and the streamlines will then be circles concentric

at this point.

To obtain the flow in the physical plane, one would need the

equation of state p=p(p), Then equation (2.13) together with either

(3.6) or (3.11) would give a determinate system of equations for the

pressure p and streamfunction i. Once these functions are solved, the

flow in the physical plane can be obtained by using (3.4) and (3.9)

in (1.10) and (1.11).

* .
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